Dukansu sigina da hayaniya a cikin sadarwa ana iya ɗaukar su azaman tsarin bazuwar da ke canzawa tare da lokaci.
Tsarin bazuwar yana da halaye na bazuwar maɓalli da aikin lokaci, waɗanda za'a iya siffanta su ta fuskoki biyu daban-daban amma masu alaƙa: (1) Tsarin bazuwar shine saitin ayyuka na samfur marasa iyaka; (2) Tsari bazuwar saitin masu canjin bazuwar.
Abubuwan ƙididdiga na matakai bazuwar ana bayyana su ta aikin rarraba su ko aikin yuwuwar yuwuwar. Idan ƙididdiga na tsari na bazuwar sun kasance masu zaman kansu daga lokacin farawa, ana kiran shi tsari mai tsayayye.
Fasalolin lambobi wata hanya ce mai tsafta ta siffanta matakan bazuwar. Idan ma'anar tsari ya kasance akai-akai kuma aikin autocorrelation R(t1,t1+τ)=R(T), an ce tsarin ya kasance a tsaye.
Idan tsari ya tsaya tsayin daka, to dole ne ya kasance a tsaye, kuma akasin haka ba gaskiya bane.
Tsari ba daidai ba ne idan matsakaicin lokacinsa yayi daidai da matsakaicin matsakaicin ƙididdiga.
Idan tsari ya kasance ergodic, to shima yana nan tsaye, kuma akasin haka ba lallai bane.
Ayyukan autocorrelation R (T) na tsarin tsayuwar gaba ɗaya aiki ne na bambancin lokaci r, kuma R(0) daidai yake da jimlar matsakaicin ƙarfi kuma shine matsakaicin ƙimar R(τ). Ƙarfin siffa mai ƙarfi Pξ (f) shine sauyi na huɗu na aikin haɗin kai R (ξ) (Wiener - Sinchin theorem). Wannan nau'i-nau'i na canje-canje yana ƙayyade dangantakar jujjuya tsakanin yankin lokaci da yankin mita. Rarraba yiwuwar tsarin Gaussian yana biyayya ga rarraba ta al'ada, kuma cikakken bayanin ƙididdiga yana buƙatar halayen lambobi kawai. Rarraba yiwuwa mai girma ɗaya ya dogara ne kawai akan ma'ana da bambance-bambance, yayin da rabon yuwuwar mai girma biyu ya dogara ne akan aikin haɗin gwiwa. Tsarin Gaussian har yanzu tsari ne na Gaussian bayan canjin layi. Dangantakar da ke tsakanin aikin rarrabawa ta al'ada da aikin Q(x) ko erf(x) yana da matukar amfani wajen nazarin aikin hana amo na tsarin sadarwar dijital. Bayan tsarin bazuwar tsaye ξi(t) ya wuce ta tsarin layi, tsarin fitar da shi ξ0(t) shima karfaffe ne.
Halayen ƙididdiga na tsarin bazuwar kunkuntar-band da sine-wave tare da kunkuntar-band Gaussian amo sun fi dacewa don nazarin tashoshi masu yawa da ke ɓacewa a cikin tsarin daidaitawa / tsarin bandpass / sadarwa mara waya. Rarraba Rayleigh, Rarraba Shinkafa da Rarraba al'ada Rabe-rabe guda uku ne na gama gari a cikin sadarwa: ambulaf ɗin siginar jigilar kaya tare da ƙarar ƙarar Gaussian mai ƙaranci shine gabaɗaya rarraba shinkafa. Lokacin da girman siginar ya yi girma, yana kula da rarraba al'ada. Lokacin da girman girman ya yi ƙarami, kusan rarraba Rayleigh ne.
Gaussian farin amo ne manufa model don nazarin ƙara amo na tashar, da kuma babban amo tushen a cikin sadarwa, thermal amo, nasa ne da irin wannan amo. Ƙimar sa a kowane lokuta daban-daban biyu ba su da alaƙa kuma masu zaman kansu na ƙididdiga. Bayan farar amo ta ratsa cikin tsarin iyaka, sakamakon shine amo mai iyaka. Farin amo mara ƙarancin wucewa da farar hayaniyar bandeji ya zama ruwan dare a cikin nazarin ka'idar.
Na sama shi ne labarin "bazuwar tsarin sadarwa" da Shenzhen HDV Phoelectron Technology LTD ya kawo muku., kuma HDV wani kamfani ne wanda ya ƙware a cikin sadarwar gani a matsayin babban kayan aikin samarwa, kamfanin kansa samarwa: jerin ONU, jerin abubuwan gani na gani,Hanyoyin ciniki na OLT, transceiver jerin ne zafi jerin kayayyakin.